SAMBA

EXPERIENCE

Persistent Handles: approaches

Ralph Bohme, Samba Team, SerNet
2018-06-08

mailto:slow@samba.org

Persistent Handles: Recap

Persistent Handles: Samba

dbwrap approach

ctdb approach

Persistent Handles: implementation (with dbwrap)
VES approach

Outlook

The End
SerNet

Persistent Handles: Recap

Persistent Handles: design (Part 1)

Recap: SMB3 Persistent Handles, what for?

e SMB3 client opens file

e SMB3 server maintains file handle state (locks, sharemode, leases)
e now server crashes:

e without Persistent Handles: state is lost
e with Persistent Handles: server somehow persists state

e client is guaranteed to be able to reestablish file handle (within
bounds / timeout)

e while client is disconnected, client is guaranteed that any concurrent
access to the file is blocked

SerNet

Persistent Handles: design (Part 2)

Todos for Samba:

1. Persist file handle state

2. Protect disconnected file handles from concurrent access

SerNet

Persistent Handles: use case

In theory any workload would benefit

e maintaining the handle state on persistent storage is expensive
e only recommended for workloads with low metadata overhead:

e HyperV
e MS-SQL

e not recommended for information worker workloads (MS-Office)

SerNet

Persistent Handles: Samba

Persistent Handles: Samba (Part 1)

Last year started research on possible designs:

support Persistent Handles only for certain workloads, similar to
what MS recommends

storing persistent handle can be slower then "normal" file handles
ignore problem of access via other protocols (!)

Samba has a clustered db storage layer with strong persistency
guarantees

can't we somehow use that?

SerNet

Persistent Handles: Samba (Part 2)

Basic idea was to combine a volatile and a persistent database:

use a volatile db for non-persistent handles
e use a persistent db for persistent handles

allow choosing persistency property per record based on a flag
DBWRAP_PERSISTENT when fetching and storing

e two designs emerged:

1. do it in dbwrap
2. let ctdb do it

SerNet

dbwrap approach

dbwrap: db what?

What is dbwrap?

e Samba uses TDB databases to store various internal bits

e TDB is a fast key/value store, shared memory mapped hashtable
with chaining

e TDB API can be tricky when it comes to locking
e TDB is not clustered, so for clustering ctdb was invented

e a sane APl was needed to abstract away locking and non-clustered
vs clustered usecase

e voila: dbwrap: an API with backends (TDB, ctdb, ...)
e dbwrap used by smbd

SerNet

dbwrap: clustered: volatile vs persistent

Two distinct modes of operation per clustered database, selected when
opening:

e persistent:
e enforces transactions, ACID, slow
e volatile:

no transactions, single key atomic updates, fast
ACID without D:
the first opener wipes the db

looses all records eg on cluster reboot

SerNet

dbwrap: handle state in volatile dbs

Samba uses a bunch of volatile databases for handle state:

e locking.tdb

e smbXsrv_open_global.tdb
e brlock.tdb

e leases.tdb

e remember: volatile dbs can loose records, not good for Persistent
Handles

SerNet

dbwrap: design (Part 1)

Opening the db:

e new flag to db_open():
DBWRAP FLAG PER REC PERSISTENT

SerNet

dbwrap: design (Part 2)

Fetching records:

new flag to dbwrap_fetch_locked(): DBWRAP_PERSISTENT
always fetch-lock the record from the volatile db first

while holding the lock, if caller passes DBWRAP_PERSISTENT, look
into the persistent db

return persistent record if found, otherwise return volatile record
the volatile db serves as a distributed lock manager (DLM) on the
persistent db

dbwrap_fetch_locked() takes no low-level lock on the persistent

db itself

ensures concurrent dbwrap_record_store() don't deadlock in the
transaction commit on the persistent db

SerNet

dbwrap: design (Part 3)

Storing records:

e dbwrap_rec_store() also uses the new DBWRAP_PERSISTENT flag:

e without DBWRAP_PERSISTENT: store in volatile db
e with DBWRAP_PERSISTENT: store in persistent db

e when changing persistency property also delete from the db with the
previous state

e ensures there's always only one record per key in either the volatile
or the persistent db

SerNet

dbwrap: keyspace (Part 1)

Ideally the keyspace of persistent and non-persistent records would be
strictly disjoint:

e if a certain key will never be stored with DBWRAP_PERSISTENT, we
could skip checking the persistent db

e would give unchanged db access semantics and performance for
shares with persistent handles = no

SerNet

dbwrap: keyspace (Part 2)

locking.tdb key: dev/inode

e the problem: admin configures two shares:

e [foo] path = /path , persistent handles = yes

e [bar] path = /path , persistent handles = no
e oh, my! Who would you do that?
e disconnected PH on a file in share foo

e clients would be able to access file via share bar

SerNet

dbwrap: keyspace (Part 3)

smbXsrv_open_global.tdb key: open global id

e use uneven numbers for non-persistent handles

e even numbers for persistent handles

SerNet

dbwrap: intersecting keyspace

If we must support intersecting keyspaces:

e just always pass DBWRAP_PERSISTENT to dbwrap_fetch_locked()
e small performance overhead for always looking into the persistent db

e could be made an option, defaulting to safe behaviour

SerNet

ctdb approach

ctdb support (Part 1)

New database model with support for per record persistency (kudos to
Amitay):

e CTDB_CONTROL_DB_ATTACH_PER_REC_PERSISTENT

e ctdb opens a volatile and a persistent db

SerNet

ctdb support (Part 2)

Storing records:

e store volatile records only in the volatile db

e store persistent records first in persistent (as usual: on all nodes),
then in volatile db

SerNet

ctdb support (Part 3)

Fetching records:

e if we're not the DMASTER of a record:
e ask the LMASTER (as usual)
e if the LMASTER has no record for the key it checks the persistent db

e if he finds a record there, copy to volatile db and hand off to
requester

SerNet

ctdb support (Part 4)

Recovery:

e recover persistent db first (as usual)
e recovery of volatile db:

e collect records from all nodes
e update records from persistent db
e and then push records to all nodes

SerNet

Persistent Handles:
implementation (with dbwrap)

Implementation status

e dbwrap: 37 patches

e patches for ctdb available from Amitay next week... :)

e implement Persistent Handles ontop of dbwrap: 103 patches

e diffstat: 109 files changed, 5128 insertions(+), 769 deletions(-)

e currently locking.tdb and smbXsrv_open_global.tdb are
opened with the new model

e reconnect works

e protecting disconnected persistent handles should work :-)
e timeout and cleanup should work

e all patches still WIP

e TBD: byterange locks, record versioning in locking.tdb, tests, ...
SerNet

Demo

SerNet

VFS approach

VFS: approach

dbwrap (and ctdb) approach is quite heavyweight:

e persists more bits then actually needed

e took me some time to fully understand the implications of a
particular Windows Scale-Out server behaviour:

SerNet

VFS: Windows cheats

Windows cheats:

Windows doesn’t grant write or handle leases on a Scale-Out Cluster
(btw: how does this work with SMB-Direct PUSH mode?)

Scale-Out cluster: active/active cluster

Failover cluster: active/passive

Clustered Samba is Scale-Out

this greatly simplifies the implementation

SerNet

VFS: persistent parts

When processing SMB2_CREATE, check for disconnected PH:

if there are any: fail with NT_STATUS_FILE_NOT_AVAILABLE
no need for fancy lease break delaying/blocking

can't the required state be stored seperately?

ideally locking.tdb record becomes redundant

SMB2_CREATE with DH2C context contains the path, so we could
fetch the state from anywhere using the path as primary record key

wait: path as primary key? That's a file. ..

why not just tuck the state to the file as an additional xattr?

SerNet

VFS: IDL for xattr blob

typedef [public] struct {
/* SMB layer bits */

hyper persistent_id;
dom_s1id owner_sid;

GUID create_guid;

uint32 durable_timeout_msec;

/* FSA layer bits */

server_id id;

uint32 access_mask;

hyper initial_allocation_s1ize;
uint32 private_options;

timeval time;

uint32 access_mask;

uint32 share_access;

} smbXsrv_ph;

typedef [public] struct {

uint32 num_phs;
[size_is(num_phs)] smbXsrv_ph phs[];
[ignore] db_record *record;
} smbXsrv_phs;
SerNet

VFS: new API

NTSTATUS SMB_VFS_PERSISTENT_STORE(struct vfs_handle_struct *handle,
files_struct *fsp);

NTSTATUS SMB_VFS_PERSISTENT_CHECK_FILE(struct vfs_handle_struct *handle,
struct smb_filename *smb_fname);

NTSTATUS SMB_VFS_PERSISTENT_RECONNECT (struct vfs_handle_struct *handle,
TALLOC_CTX *mem_ctx,
struct smb_request *smblreq,
struct smbXsrv_open *op,
const char *fname,
files_struct **_fsp);

SerNet

VFS: using the new VFS functions

e when processing SMB2_CREATE, DH2Q triggers a call to
SMB_VFS_PERSISTENT_STORE ()

e call SMB_VFS_PERSISTENT_CHECK_FILE() in open_file ntcreate()
under the sharemode lock to block access to files with disconnected
persistent handles

e when processing SMB2_CREATE DH2C use
SMB_VFS_PERSISTENT_RECONNECT () instead of the durable handles
reconnect functions

e simple so far, unfortunately ... (see next slide)

SerNet

VFS: GlobalOpenTable problem (Part 1)

MS-SMB2 mandates:

MS-SMB2 3.3.5.9.12 Handling the DH2C Create Context.

The server MUST lookup an existing Open in the GlobalOpenTable by
doing a lookup with the Fileld.Persistent portion of the create

context. O

SerNet

VFS: GlobalOpenTable problem (Part 2)

So we still need a persistent smbXsrv_open_global.tdb

e could use the new dbwrap backend just for this
e or open an additional smbXsrv_persistent_global.tdb explictly

e then one million dollar question: could we do without?

SerNet

VFS: GlobalOpenTable problem (Part 3)

Or we could just ignore MS-SMB2 3.3.5.9.12:

e use the path from the SMB2_CREATE reconnect to fetch xattr
e this way we wouldn't need to use any persistent db at all

e research needed how to deal with byte-range locks, could be stored
in the xattr as well

e traverse filesystem to get a list of persistent handle xattrs is not
practical

e that means no tool to list stored persistent handles xattr

SerNet

Outlook

e use dbwrap approach for prototyping
e use ctdb approach in the released version

e do more research on VFS approach, reconnect already works

SerNet

The End

e Thank you!

e Questions?

SerNet

1. https://git.samba.org/7p=slow/samba.git;a=shortlog;h=
refs/heads/ph-tests

2. https://wiki.samba.org/index.php/New_clustering_
features_in_SMB3_and_Samba

3. https://docs.microsoft.com/en-us/windows-server/
failover-clustering/sofs-overview

SerNet

https://git.samba.org/?p=slow/samba.git;a=shortlog;h=refs/heads/ph-tests
https://git.samba.org/?p=slow/samba.git;a=shortlog;h=refs/heads/ph-tests
https://wiki.samba.org/index.php/New_clustering_features_in_SMB3_and_Samba
https://wiki.samba.org/index.php/New_clustering_features_in_SMB3_and_Samba
https://docs.microsoft.com/en-us/windows-server/failover-clustering/sofs-overview
https://docs.microsoft.com/en-us/windows-server/failover-clustering/sofs-overview

