
Persistent Handles: approaches

Ralph Böhme, Samba Team, SerNet

2018-06-08

mailto:slow@samba.org


Outline

Persistent Handles: Recap

Persistent Handles: Samba

dbwrap approach

ctdb approach

Persistent Handles: implementation (with dbwrap)

VFS approach

Outlook

The End



Persistent Handles: Recap



Persistent Handles: design (Part 1)

Recap: SMB3 Persistent Handles, what for?

• SMB3 client opens file

• SMB3 server maintains file handle state (locks, sharemode, leases)

• now server crashes:
• without Persistent Handles: state is lost
• with Persistent Handles: server somehow persists state

• client is guaranteed to be able to reestablish file handle (within
bounds / timeout)

• while client is disconnected, client is guaranteed that any concurrent
access to the file is blocked



Persistent Handles: design (Part 2)

Todos for Samba:

1. Persist file handle state

2. Protect disconnected file handles from concurrent access



Persistent Handles: use case

In theory any workload would benefit

• maintaining the handle state on persistent storage is expensive

• only recommended for workloads with low metadata overhead:
• HyperV
• MS-SQL
• . . .

• not recommended for information worker workloads (MS-Office)



Persistent Handles: Samba



Persistent Handles: Samba (Part 1)

Last year started research on possible designs:

• support Persistent Handles only for certain workloads, similar to
what MS recommends

• storing persistent handle can be slower then "normal" file handles

• ignore problem of access via other protocols (!)

• Samba has a clustered db storage layer with strong persistency
guarantees

• can’t we somehow use that?



Persistent Handles: Samba (Part 2)

Basic idea was to combine a volatile and a persistent database:

• use a volatile db for non-persistent handles

• use a persistent db for persistent handles

• allow choosing persistency property per record based on a flag
DBWRAP_PERSISTENT when fetching and storing

• two designs emerged:
1. do it in dbwrap
2. let ctdb do it



dbwrap approach



dbwrap: db what?

What is dbwrap?

• Samba uses TDB databases to store various internal bits

• TDB is a fast key/value store, shared memory mapped hashtable
with chaining

• TDB API can be tricky when it comes to locking

• TDB is not clustered, so for clustering ctdb was invented

• a sane API was needed to abstract away locking and non-clustered
vs clustered usecase

• voilà: dbwrap: an API with backends (TDB, ctdb, . . . )

• dbwrap used by smbd



dbwrap: clustered: volatile vs persistent

Two distinct modes of operation per clustered database, selected when
opening:

• persistent:
• enforces transactions, ACID, slow

• volatile:
• no transactions, single key atomic updates, fast
• ACID without D:
• the first opener wipes the db
• looses all records eg on cluster reboot



dbwrap: handle state in volatile dbs

Samba uses a bunch of volatile databases for handle state:

• locking.tdb

• smbXsrv_open_global.tdb

• brlock.tdb

• leases.tdb

• remember: volatile dbs can loose records, not good for Persistent
Handles



dbwrap: design (Part 1)

Opening the db:

• new flag to db_open():
DBWRAP_FLAG_PER_REC_PERSISTENT



dbwrap: design (Part 2)

Fetching records:

• new flag to dbwrap_fetch_locked(): DBWRAP_PERSISTENT

• always fetch-lock the record from the volatile db first

• while holding the lock, if caller passes DBWRAP_PERSISTENT, look
into the persistent db

• return persistent record if found, otherwise return volatile record

• the volatile db serves as a distributed lock manager (DLM) on the
persistent db

• dbwrap_fetch_locked() takes no low-level lock on the persistent
db itself

• ensures concurrent dbwrap_record_store() don’t deadlock in the
transaction commit on the persistent db



dbwrap: design (Part 3)

Storing records:

• dbwrap_rec_store() also uses the new DBWRAP_PERSISTENT flag:
• without DBWRAP_PERSISTENT: store in volatile db
• with DBWRAP_PERSISTENT: store in persistent db

• when changing persistency property also delete from the db with the
previous state

• ensures there’s always only one record per key in either the volatile
or the persistent db



dbwrap: keyspace (Part 1)

Ideally the keyspace of persistent and non-persistent records would be
strictly disjoint:

• if a certain key will never be stored with DBWRAP_PERSISTENT, we
could skip checking the persistent db

• would give unchanged db access semantics and performance for
shares with persistent handles = no



dbwrap: keyspace (Part 2)

locking.tdb key: dev/inode

• the problem: admin configures two shares:
• [foo] path = /path , persistent handles = yes
• [bar] path = /path , persistent handles = no

• oh, my! Who would you do that?

• disconnected PH on a file in share foo

• clients would be able to access file via share bar



dbwrap: keyspace (Part 3)

smbXsrv_open_global.tdb key: open global id

• use uneven numbers for non-persistent handles

• even numbers for persistent handles



dbwrap: intersecting keyspace

If we must support intersecting keyspaces:

• just always pass DBWRAP_PERSISTENT to dbwrap_fetch_locked()

• small performance overhead for always looking into the persistent db

• could be made an option, defaulting to safe behaviour



ctdb approach



ctdb support (Part 1)

New database model with support for per record persistency (kudos to
Amitay):

• CTDB_CONTROL_DB_ATTACH_PER_REC_PERSISTENT

• ctdb opens a volatile and a persistent db



ctdb support (Part 2)

Storing records:

• store volatile records only in the volatile db

• store persistent records first in persistent (as usual: on all nodes),
then in volatile db



ctdb support (Part 3)

Fetching records:

• if we’re not the DMASTER of a record:

• ask the LMASTER (as usual)

• if the LMASTER has no record for the key it checks the persistent db

• if he finds a record there, copy to volatile db and hand off to
requester



ctdb support (Part 4)

Recovery:

• recover persistent db first (as usual)

• recovery of volatile db:
• collect records from all nodes
• update records from persistent db
• and then push records to all nodes



Persistent Handles:
implementation (with dbwrap)



Implementation status

• dbwrap: 37 patches

• patches for ctdb available from Amitay next week. . . :)

• implement Persistent Handles ontop of dbwrap: 103 patches

• diffstat: 109 files changed, 5128 insertions(+), 769 deletions(-)

• currently locking.tdb and smbXsrv_open_global.tdb are
opened with the new model

• reconnect works

• protecting disconnected persistent handles should work :-)

• timeout and cleanup should work

• all patches still WIP

• TBD: byterange locks, record versioning in locking.tdb, tests, . . .



Demo

Demo



VFS approach



VFS: approach

dbwrap (and ctdb) approach is quite heavyweight:

• persists more bits then actually needed

• took me some time to fully understand the implications of a
particular Windows Scale-Out server behaviour:



VFS: Windows cheats

Windows cheats:

• Windows doesn’t grant write or handle leases on a Scale-Out Cluster

• (btw: how does this work with SMB-Direct PUSH mode?)

• Scale-Out cluster: active/active cluster

• Failover cluster: active/passive

• Clustered Samba is Scale-Out

• this greatly simplifies the implementation



VFS: persistent parts

When processing SMB2_CREATE, check for disconnected PH:

• if there are any: fail with NT_STATUS_FILE_NOT_AVAILABLE

• no need for fancy lease break delaying/blocking

• can’t the required state be stored seperately?

• ideally locking.tdb record becomes redundant

• SMB2_CREATE with DH2C context contains the path, so we could
fetch the state from anywhere using the path as primary record key

• wait: path as primary key? That’s a file. . .

• why not just tuck the state to the file as an additional xattr?



VFS: IDL for xattr blob



VFS: new API



VFS: using the new VFS functions

• when processing SMB2_CREATE, DH2Q triggers a call to
SMB_VFS_PERSISTENT_STORE()

• call SMB_VFS_PERSISTENT_CHECK_FILE() in open_file_ntcreate()
under the sharemode lock to block access to files with disconnected
persistent handles

• when processing SMB2_CREATE DH2C use
SMB_VFS_PERSISTENT_RECONNECT() instead of the durable handles
reconnect functions

• simple so far, unfortunately . . . (see next slide)



VFS: GlobalOpenTable problem (Part 1)

MS-SMB2 mandates:

MS-SMB2 3.3.5.9.12 Handling the DH2C Create Context.
The server MUST lookup an existing Open in the GlobalOpenTable by
doing a lookup with the FileId.Persistent portion of the create
context.



VFS: GlobalOpenTable problem (Part 2)

So we still need a persistent smbXsrv_open_global.tdb

• could use the new dbwrap backend just for this

• or open an additional smbXsrv_persistent_global.tdb explictly

• then one million dollar question: could we do without?



VFS: GlobalOpenTable problem (Part 3)

Or we could just ignore MS-SMB2 3.3.5.9.12:

• use the path from the SMB2_CREATE reconnect to fetch xattr

• this way we wouldn’t need to use any persistent db at all

• research needed how to deal with byte-range locks, could be stored
in the xattr as well

• traverse filesystem to get a list of persistent handle xattrs is not
practical

• that means no tool to list stored persistent handles xattr



Outlook



Outlook

• use dbwrap approach for prototyping

• use ctdb approach in the released version

• do more research on VFS approach, reconnect already works



The End



Q&A

• Thank you!

• Questions?



Links

1. https://git.samba.org/?p=slow/samba.git;a=shortlog;h=
refs/heads/ph-tests

2. https://wiki.samba.org/index.php/New_clustering_
features_in_SMB3_and_Samba

3. https://docs.microsoft.com/en-us/windows-server/
failover-clustering/sofs-overview

https://git.samba.org/?p=slow/samba.git;a=shortlog;h=refs/heads/ph-tests
https://git.samba.org/?p=slow/samba.git;a=shortlog;h=refs/heads/ph-tests
https://wiki.samba.org/index.php/New_clustering_features_in_SMB3_and_Samba
https://wiki.samba.org/index.php/New_clustering_features_in_SMB3_and_Samba
https://docs.microsoft.com/en-us/windows-server/failover-clustering/sofs-overview
https://docs.microsoft.com/en-us/windows-server/failover-clustering/sofs-overview

